Math 115 Fall 2017 Lecture 24

Solve by using the Zero-factor Property:

1) $(x-5)(x+10)=0$

$$
\begin{array}{ccc}
x-5=0 & \text { or } x+10=0 \\
x=5 & x=-10
\end{array}
$$

2)

$$
\begin{array}{lll}
(3 x+7)(2 x-9)=0 \\
3 x+7=0 & \text { or } & 2 x-9=0 \\
3 x=-7 & 2 x=9 \\
x=\frac{-7}{3} & x=\frac{9}{2} & \left\{-\frac{7}{3}, \frac{9}{2}\right\}
\end{array}
$$

Solve by factoring:

1) RHS $=0$
2) LHS Comp.factoved
3) use Z.F.P. to solve
4)

$$
\begin{aligned}
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \\
& x-5=0 \quad \text { or } \quad x+2=0 \\
& x=5 \quad x=-2
\end{aligned}
$$

4)

$$
\begin{aligned}
& x^{2}+16=8 x \\
& x^{2}+16-8 x=0 \\
& x^{2}-8 x+16=0 \\
& (x-4)(x-4)=0 \\
& \text { by Z.F.P. } \quad x-4=0 \quad x=4
\end{aligned}
$$

Repeated Soln.

Solve $2 x^{2}=7-5 x$ by factoring.

$$
\begin{array}{lc}
2 x^{2}-7+5 x=0 & \text { RHS }=0 \\
2 x^{2}+5 x-7=0 & \text { order } \\
(2 x+7)(x-1)=0 & \text { factor }
\end{array}
$$

by Z.F.T.

$$
\begin{array}{ll}
2 x+7=0 & x-1=0 \\
2 x=-7 & x=1 \\
x=\frac{-7}{2} &
\end{array}
$$

The product of two consecutive integers
is 30
find all such integers

$$
\begin{aligned}
& x(x+1)=30 \\
& x^{2}+x=30 \\
& x^{2}+x-30=0 \\
& (x+6)(x-5)=0 \\
& x+6=0 \quad x=-6 \\
& x-5=0 \quad x=5
\end{aligned}
$$

x	$x+1$
5	6
-6	-5

The product of two consecutive odd integers
is 63.
find all such integers.

x	$x+2$
7	9
-9	-7

$$
\begin{aligned}
& x(x+2)=63 \\
& x^{2}+2 x=63 \\
& x^{2}+2 x-63=0 \\
& (x+9)(x-7)=0 \\
& x+9=0 \quad x=-9 \\
& x-7=0 \quad x=7
\end{aligned}
$$

$$
x+9=0 \quad x=-9 \quad \propto \text { by Z.R.R. }
$$

find two consecutive even integers Such that the sum of their squares is 52 .

$$
\begin{gathered}
x^{2}+(x+2)^{2}=52 \\
x^{2}+(x+2)(x+2)=52
\end{gathered}
$$

x	$x+2$

x must be even.
Foil $\dot{\varepsilon}$. Simplify

$$
\begin{gathered}
\text { Foil غ simplify } \\
x^{2}+x^{2}+2 x+2 x+4=52 \\
2 x^{2}+4 x+4=52
\end{gathered} \quad \begin{gathered}
\text { Make RHS } \\
\text { zero, and } \\
\text { Simplify }
\end{gathered}
$$

$$
\begin{aligned}
& 2 x^{2}+4 x+4-52=0 \\
& 2 x^{2}+4 x-48=0
\end{aligned}
$$

Divide by 2 to reduce

$$
x^{2}+2 x-24=0
$$

Factor LHS completely, then use Z.F.P. to Solve

$$
\begin{aligned}
& \quad(x+6)(x-4)=0 \\
& x+6=0 \quad x-4=0 \\
& x=-6 \quad x=4
\end{aligned}
$$

x	$x+2$
4	6
-6	-4
or $-6!-4$	

The Area of a rectangular sign is $15 \mathrm{ft}^{2}$. The length is 1 ft shorter than twice its width.

Find its dimensions.

$$
\begin{aligned}
& A=15 \mathrm{ft}^{2} \\
& x(2 x-1)=15 \\
& 2 x^{2}-x=15 \\
& 2 x^{2}-x-15=0 \\
& -6 \vdots 5 \quad \begin{array}{l}
P=-30 \\
-30 \quad S
\end{array}=-1
\end{aligned}
$$

$$
\int \begin{array}{r}
\underbrace{2 x^{2}-6 x}+\underbrace{5 x-15}=0 \\
2 x(x-3)+5(x-3)=0 \\
(x-3)(2 x+5)=0
\end{array}
$$

by Z.F.T.

$$
\begin{array}{ll}
x-3=0 & \begin{array}{l}
2 x+5=0 \\
x=3
\end{array} \\
\text { Dimensions: } & x \text { ft by } 5 \mathrm{ft} \\
2 x-1
\end{array}
$$

Area of a rectangular room is $36 \mathrm{~m}^{2}$.
The length is 1 m longer than twice its width. Find its dimensions.

$$
\underbrace{2 x^{2}+9 x}-\underbrace{8 x-36}=0
$$

$$
x(2 x+9)-4(2 x+9)=0
$$

$$
\begin{aligned}
& x(2 x+1)=36 \\
& 2 x^{2}+x=36 \\
& 2 x^{2}+x-36=0 \\
& 98-8 \quad P=-72 \\
& -72 \quad 5=1 \\
& \rightarrow 2 x+9=0 \quad x>
\end{aligned}
$$

$$
(2 x+9)(x-4)=0 \quad x-4=0 \quad x=4
$$

Solve: $(x-2)^{2}+x^{2}=(x+2)^{2}$

$$
\begin{aligned}
& (x-2)(x-2)+x^{2}=(x+2)(x+2) \\
& \left.x^{2}-2 x-2 x+4+x^{2}=x^{2}+2 x+2 x\right)+y^{\prime} \\
& x^{2}-4 x-4 x=0 \\
& x^{2}-8 x=0 \\
& x(x-8)=0 \quad\left\{\begin{array}{l}
x-8=0
\end{array}\right\}
\end{aligned}
$$

$$
x=0
$$

$$
x=8
$$

Reduce $\frac{36}{45}$

$$
\frac{36}{45}=\frac{x \cdot 4}{x \cdot 5}=\frac{4}{5}
$$

Reduce

$$
\frac{x^{2}+2 x}{x^{2}+7 x+10}=\frac{x(x+2)}{(x+5)(x+2)}=\frac{x}{x+5}
$$

Reduce $\frac{x^{2}-25}{x^{2}-8 x+15}=\frac{(x+5)(x-5)}{(x-3)(x-5)}$

$3 x^{2}-x-4=x^{3 x^{2}+3 x-4 x-4}$
$3 x(x+1)-4(x+1)$

Reduce $\frac{3 x^{2}-x-4}{4 x^{2}-x-5}=\frac{(x+1)(3 x-4)}{(x+1)(4 x-5)}$

$4 x^{2}-x-5=4 x^{2}+4 x-5 x-5$
$4 \varepsilon-5=-20$

Reduce:

$$
\begin{aligned}
\frac{x^{2}-100}{x^{3}-1000} & =\frac{(x)^{2}-(10)^{2}}{(x)^{3}-(10)^{3}} \\
& =\frac{(x+10)(x-10)}{(x-10)\left(x^{2}+10 x+100\right)} \\
& =\frac{x+10}{x^{2}+10 x+100}
\end{aligned}
$$

Quadratic Equation: $a x^{2}+b x+c=0 ; a \neq 0$
Ex:

$$
\begin{aligned}
& 2 x^{2}+3 x-7=0, \quad x^{2}-8 x+10=0 \\
& \frac{2}{3} x^{2}-8 x+\frac{1}{2}=0, \quad 5 x^{2}+3 x=0
\end{aligned}
$$

Quadratic formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Solve $x^{2}+3 x-10=0$ by Quadratic formula.

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
a=1, \quad b=3, \quad c=-10
\end{gathered}
$$

we compute $b^{2}-4 a c=(3)^{2}-4(1)(-10)$

$$
\begin{aligned}
& =9+40 \\
& =49
\end{aligned}
$$

we use Q-formula to Solve

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{49}}{2(1)} \\
& =\frac{-3 \pm 7}{2} \quad x=\frac{-3+7}{2}=\frac{4}{2}=2 \\
& x=\frac{-3-7}{2}=\frac{-10}{2}=-5
\end{aligned}\{-5,2\}
$$

Solve $2 x^{2}-5 x=7$ by Quadratic formula.

$$
\begin{aligned}
& 2 x^{2}-5 x-7=0 \\
& a=2 \quad b=-5 \quad c=-7
\end{aligned}
$$

$$
b^{2}-4 a c=(-5)^{2}-4(2)(-7)=25+56=81
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-5) \pm \sqrt{81}}{2(2)}=\frac{5 \pm 9}{4}
$$

$$
\begin{array}{cr}
x=\frac{5+9}{4}=\frac{14}{4} & x=\frac{5-9}{4}=\frac{-4}{4} \\
x=7 / 2 & x=-1
\end{array}
$$

Solve $(3 x-1)(2 x+3)=72$ by

$$
\begin{array}{ll}
\text { Quadratic formula. } & \text { Hint: FOIL, } \\
\text { Simplify, } \\
6 x^{2}+9 x-2 x-3-72=0 \quad & \begin{array}{l}
\text { and write }
\end{array} \\
6 x^{2}+7 x-75=0 \quad & \text { in stand. form. } \\
a=6, b=7, \quad c=-75 & a x^{2}+b x+c=0 \\
b^{2}-4 a c=(7)^{2}-4(6)(-75)=1849
\end{array}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-7 \pm \sqrt{1849}}{2(6)} \\
& x=\frac{-7 \pm 43}{12} \quad x=\frac{-7+43}{12}=\frac{36}{12}=3 \\
& \left\{\frac{-25}{6}, 3\right\}
\end{aligned}
$$

Solve $3 x(5 x-2)=48$ by Q-formula.

$$
15 x^{2}-6 x-48=0
$$

Divide by 3 to reduce,

$$
\begin{aligned}
& 5 x^{2}-2 x-16=0 \\
& a=5, b=-2, \quad c=-16 \\
& b^{2}-4 a c=(-2)^{2}-4(5)(-16)=324
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-2) \pm \sqrt{324}}{2(5)} \\
& x=\frac{2 \pm 18}{10} \quad x=\frac{2+18}{10}=\frac{20}{10}=2 \\
& \left\{\frac{-8}{5}, 2\right\}
\end{aligned}
$$

Solve $5 x(4 x+3)=110$ by using Quadratic formula.

$$
20 x^{2}+15 x-110=0
$$

Divide by 5 to reduce

$$
\begin{aligned}
& 4 x^{2}+3 x-22=0 \\
& a=4 \quad b=3 \quad c=-22 \\
& b^{2}-4 a c=(3)^{2}-4(4)(-22)=361
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{361}}{2(4)} \\
&=\frac{-3 \pm 19}{8} \quad x=\frac{-3+19}{8}=\frac{16}{8}=2 \\
&\left\{\frac{-11}{4}, 2\right\} \quad x=\frac{-3-19}{8}=\frac{-22}{8}=\frac{-11}{4}
\end{aligned}
$$

Solve $x^{2}=100$ by inspection.
The answer is 10 and -10 .

Work on the next two study guides.

